XML
Laplace.T Root-locus Transient response Frecuency response
       
 
 
 

13 Problem A.5.9 Ogata 4edition (partial-fraction expansion)



    Lets do the partial-fraction expansion by Scilab of the following system:

     


    \begin{displaymath}\frac{C(s)}{R(s)}=\frac{3\cdot s^{3}+25\cdot s^{2}+72\cdot s+80}{(s^{4}+8\cdot s^{3}+40\cdot s^{2}+96\cdot s+80)}\end{displaymath}

    Program in Scilab:
    s=%s;
    
    num=80+72*s+25*s^2+3*s^3;
    
    den=0+80*s+96*s^2+40*s^3+8*s^4+s^5;
    
    sys_tf=syslin('c',num/den)
    
    sys_ss=tf2ss(sys_tf);
    
    tf=pfss(sys_ss);
    
    for k=1:3
    
    clean(tf(k))
    
    end;
    
    
    
    Result:
    
    ans  =
        0.25 - 0.5625s   
        --------------   
                     2    
         20 + 4s + s     
     ans  =
        1
        -
        s   
     ans  =
      - 1.25 - 0.4375s   
        --------------   
                    2    
          4 + 4s + s
    
    
    
    

     

    The partial-fraction expansion:

    \begin{displaymath}C(s)=\frac{3\cdot s^{3}+25\cdot s^{2}+72\cdot s+80}{(s^{4}+8\cdot s^{3}+40\cdot s^{2}+96\cdot s+80)\cdot s}=\end{displaymath}



    \begin{displaymath}\frac{1}{s}+\frac{0.25-0.56\cdot s}{ s^{2}+4\cdot s+4+16}+\fr...
...\cdot s}{ (s+2)^{2}+4^{2}}+\frac{-1.25-0.44\cdot s}{(s+2)^{2}}=\end{displaymath}



    \begin{displaymath}\frac{1}{s}+\frac{16}{16}\cdot \frac{0.25-0.56\cdot s}{ (s+2)...
...+4^{2}}+\frac{16}{16}\cdot \frac{-1.25-0.44\cdot s}{(s+2)^{2}}=\end{displaymath}



    \begin{displaymath}=\frac{1}{s}+\frac{1}{16}\cdot\frac{(4-9\cdot s)}{ (s+2)^{2}+4^{2}}+\frac{1}{16}\cdot\frac{-(20+7s)}{(s+2)^{2}}=\end{displaymath}



    \begin{displaymath}=\frac{1}{s}-\frac{1}{16}\cdot\frac{(9\cdot s+18-18-4)}{ (s+2...
...4^{2}}+\frac{1}{16}\cdot\frac{-(7\cdot s+14-14+20)}{(s+2)^{2}}=\end{displaymath}



    \begin{displaymath}=\frac{1}{s}-\frac{1}{16}\cdot\frac{(9\cdot( s+2)-22)}{ (s+2)^{2}+4^{2}}+\frac{1}{16}\cdot\frac{-(7\cdot (s+2)+6)}{(s+2)^{2}}=\end{displaymath}



    \begin{displaymath}=\frac{1}{s}-\frac{9}{16}\cdot\frac{(s+2)}{ (s+2)^{2}+4^{2}}+...
...ot\frac{(s+2)}{(s+2)^{2}}-\frac{1}{16}\cdot\frac{6}{(s+2)^{2}}=\end{displaymath}



    \begin{displaymath}=1-\frac{9}{16}\cdot e^{-2\cdot t}\cdot cos(4\cdot t)+\frac{1...
...{16}\cdot e^{-2\cdot t}-\frac{6}{16}\cdot t \cdot e^{-2\cdot t}\end{displaymath}


    Let's plot the tranference function and obtained equation of partial-fraction expansion.

     

    Program in Scilab:
    s=%s;
    
    num=80+72*s+25*s^2+3*s^3;
    
    den=80+96*s+40*s^2+8*s^3+s^4;
    
    g=syslin('c',num/den);
    
    t=0:0.01:3;
    
    gs=csim('step',t,g);
    
    y=1-(9/16)*exp(-2*t).*cos(4*t)+(11/32)*exp(-2*t).*sin(4*t)-(7/16)
    *exp(-2*t)-(6/16)*t.*exp(-2*t);
    
    subplot(2,1,1);
    
    xgrid;
    
    xtitle('Response to unit-step of 1-(9/16)*exp(-2*t)*cos(4*t)+
    (11/32)*exp(-2*t)*sin(4*t)-(7/16)*exp(-2*t)-(6/16)*t*exp(-2*t)',
    't(seg)','Amplitude');
    
    plot2d(t,y,3);
    
    subplot(2,1,2);
    
    plot2d(t,gs);
    
    xgrid;
    
    xtitle('Response to unit-step of the system','t(seg)'
    ,'Amplitude')
    
    Image ProblemaA5_9