XML
Laplace.T Root-locus Transient response Frecuency response
       
 
 
 

14 Problem A.5.10 Ogata 4edition (partial-fraction expansion)



    Lets do the partial-fraction expansion by Scilab of the following system:

    \begin{displaymath}\frac{C(s)}{R(s)}=\frac{5\cdot (s+20)}{s \cdot (s+4.59)\cdot (s^{2}+3.14\cdot s+16.35)}\end{displaymath}

    Program in Scilab:
    s=%s;
    
    num=5*(s+20);
    
    den=s*(s+4.59)*(s^2+3.41*s+16.35);
    
    g=syslin('c',num/den);
    
    cr=g/. 1;
    
    c=cr*(1/s);
    
    cs=tf2ss(c);
    
    fs=pfss(cs)
    
    for k=1:3
    
    clean(8*fs(k))
    
    end;
    

    Result:

      ans  =
     
        - 13.959394 + 3.0016262s     
        --------------------------   
                                  2  
        10.011621 + 2.0004717s + s   
     ans  =
     
        - 46.040505 - 11.001626s     
        --------------------------   
                                  2  
        9.9883925 + 5.9995283s + s   
     ans  =
     
        8   
        -   
        s  
        
         
    -->c
     c  =
     
                     100 + 5s                 
        ----------------------------------    
                       2          3    4   5  
        100s + 80.0465s + 32.0019s + 8s + s
    
    
    
    

     

     

     

     

     

     

    With these equations do partial-fraction expansion of close-loop system to unit-step input.


    \begin{displaymath}C(s)=\frac{5\cdot s+100}{(s^{5}+8\cdot s^{4}+32\cdot s^{3}+80\cdot s^{2}+100\cdot s)}=\end{displaymath}



    \begin{displaymath}=\frac{1}{s}+\frac{1}{8}\cdot \frac{(3\cdot s-14)}{ s^{2}+2\c...
...10}+\frac{1}{8}\cdot \frac{-(46+11\cdot s)}{s^{2}+6\cdot s+10}=\end{displaymath}



    \begin{displaymath}=\frac{1}{s}+\frac{1}{8}\cdot \frac{(3\cdot s+3-3-14)}{ ((s+1...
...}+\frac{1}{8}\cdot \frac{-(46+33-33+11\cdot s)}{((s+3)^{2}+1)}=\end{displaymath}



    \begin{displaymath}=\frac{1}{s}+\frac{1}{8}\cdot \frac{(3\cdot (s+1)-17)}{ ((s+1...
...2})}+\frac{1}{8}\cdot \frac{-(11\cdot(s+3)+13)}{((s+3)^{2}+1)}=\end{displaymath}



    \begin{displaymath}=\frac{1}{s}+\frac{3}{8}\cdot \frac{(s+1)}{ ((s+1)^{2}+3^{2})...
...s+3)}{((s+3)^{2}+1)}-\frac{1}{8}\cdot \frac{13}{((s+3)^{2}+1)}=\end{displaymath}


    \begin{displaymath}=1+\frac{3}{8}\cdot e^{-t}\cdot cos(3\cdot t)-\frac{17}{24}\c...
...cdot t}\cdot cos(t)-\frac{13}{8}\cdot e^{-3\cdot t}\cdot sin(t)\end{displaymath}


    Let's plot the tranference function and obtained equation of partial-fraction expansion.

     

    Program in Scilab:
    s=%s;
    
    num=5*(s+20);
    
    den=100+80*s+32*s^2+8*s^3+s^4;
    
    g=syslin('c',num/den);
    
    t=0:0.01:5;
    
    gs=csim('step',t,g);
    
    y=1+(3/8)*exp(-t).*cos(3*t)-(17/24)*exp(-t).*sin(3*t)-(11/8)*exp(-3*t).*cos(t)
    -(13/8)*exp(-3*t).*sin(t);
    
    clf;
    
    subplot(2,1,1);
    
    xgrid;
    
    xtitle('Reponse to unit-step of y=1+(3/8)*exp(-t)*cos(3*t)
    -(17/24)*exp(-t)*sin(3*t)-(11/8)*exp(-3*t)*cos(t)-(13/8)*exp(-3*t)*sin(t)',
    't(seg)','Amplitude');
    
    plot2d(t,y,3);
    
    subplot(2,1,2);
    
    plot2d(t,gs);
    
    xgrid;
    
    xtitle('Reponse to unit-step','t(seg)','Amplitude')
    
    Image ProblemaA5_10_pag304