XML
Laplace.T Root-locus Transient response Frecuency response
       
 
 
 

12 Problem A.5.8 Ogata 4edition (Equation)



    Solve this equation:

    \begin{displaymath}
\ddot{x}+2\dot{x}+100x=0
\end{displaymath} (1)

    Solution:

    \begin{displaymath}
\ddot{x}=> s^{2}X(s)-sx(0)
\end{displaymath} (2)


    \begin{displaymath}
\dot{x}=> sX(s)-x(0)
\end{displaymath} (3)


    Substituting the two above equations in the (1)

    \begin{displaymath}
s^{2}X(s)-sx(0)+2(sX(s)-x(0))+100X(s)=0
\end{displaymath} (4)


    \begin{displaymath}
(s^{2}+2s+k)X(s)=(s+2)x(0)
\end{displaymath} (5)


    \begin{displaymath}
X(s)=\frac{s+2}{(s^{2}+2s+100)}x(0)
\end{displaymath} (6)


    We need $ \sigma $, $ w_{d}$, sine and cosine transforms

    \begin{displaymath}\frac{s+2}{(s^{2}+2\sigma s+w_{n}^{2})}x(0)=\frac{s+2}{(s^{2}...
...}+\sigma^{2})}x(0)=\frac{s+2}{((s+\sigma)^{2}+w_{d}^{2})}x(0)
\end{displaymath}


    we get $ \sigma=1 $, $ w_{n}^2=100 $ y $ w_{d}^{2}= w_{n}^{2}-\sigma^{2}=99 $.

    \begin{displaymath}
X(s)=\frac{s+2}{((s+1)^{2}+99)}x(0)
\end{displaymath} (7)


    \begin{displaymath}
X(s)=\frac{s+1}{((s+1)^{2}+99)}x(0)+\frac{1}{((s+1)^{2}+99)}x(0)
\end{displaymath} (8)


    We get $w_{d}=\sqrt{99}=9.95 $

    \begin{displaymath}
x(t)=e^{-t}\cos{(9.95t)}x(0)+\frac{e^{-t}\sin{(9.95t)}}{9.95} x(0)
\end{displaymath} (9)


    The resulting equation has a period $T=\frac{2\pi}{9.95}$ due to the sine and cosine. Ie, four cicles after, it's $4T=\frac{8\pi}{9.95}$

    \begin{displaymath}
x(4T)=e^{-4T}\cos{(9.95\cdot4T)}x(0)+\frac{e^{-4T}\sin{(9.95\cdot4T)}}{9.95} x(0)=e^{-4T}x(0)=0.004
\end{displaymath} (10)