XML
Laplace.T Root-locus Transient response Frecuency response
       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

22 Problem A.5.24 Ogata 4edicion (steady-state error)



    The trasference function of steady-state error is :


    \begin{displaymath}\frac{C(s)}{R(s)}=\frac{\frac{K}{(s\cdot (J \cdot s+B))}}{(1+...
...{(s\cdot (J \cdot s+B))})}=\frac{K}{(J \cdot s^{2}+B\cdot s+K)}\end{displaymath}



    \begin{displaymath}\frac{E(s)}{R(s)}=\frac{R(s)-C(s)}{R(s)}=1-\frac{C(s)}{R(s)}=...
...=\frac{J \cdot s^{2}+B\cdot s+K-K}{(J \cdot s^{2}+B\cdot s+K)}=\end{displaymath}



    \begin{displaymath}=\frac{J \cdot s^{2}+B\cdot s}{(J \cdot s^{2}+B\cdot s+K)}\end{displaymath}



    With a ramp input $R(s)=\frac{1}{s^{2}}$,we obtain the error's Laplace Transform:


    \begin{displaymath}E(s)=\frac{J \cdot s^{2}+B\cdot s}{(J \cdot s^{2}+B\cdot s+K)...
...^{2}+B\cdot s}{(J \cdot s^{2}+B\cdot s+K)}\cdot \frac{1}{s^{2}}\end{displaymath}



    We use the final-value theorem to obtain the error e(t) at the infinity:


    \begin{displaymath}e(\infty)=\lim_{s \rightarrow 0} s\cdot E(s)=\lim_{s \rightar...
...w 0} \frac{J \cdot s+B}{(J \cdot s^{2}+B\cdot s+K)}=\frac{B}{K}\end{displaymath}



    If we increase K to eliminate error, the value of $\zeta=\frac{B}{2\cdot \sqrt{K\cdot J}}$ will decrease thereby increasing the overshooting:

    To correct this we have two solutions:

    a)Use a proportional derivative control




    \xymatrix{r \ar[r]& *+o[F]{\pm} \ar[r]&*+<1cm>[F]{(K_{p}+K_{d}\cdot s)} \ar[r]&*...
...\cdot s+B)\cdot s)}} \ar[r] &\ar[d] \ar[r] & c\\
&\ar[u]&\ar[l]&\ar[l] &\ar[l]}





    \begin{displaymath}\frac{C(s)}{R(s)}=\frac{\frac{(K_{p}+K_{d}\cdot s)}{(s\cdot (...
...c{(K_{p}+K_{d}\cdot s)}{(J \cdot s^{2}+(B+K_{d})\cdot s+K_{p})}\end{displaymath}



    \begin{displaymath}\frac{E(s)}{R(s)}=\frac{R(s)-C(s)}{R(s)}=1-\frac{(K_{p}+K_{d}...
... \cdot s^{2}+B\cdot s)}{(J \cdot s^{2}+(B+K_{d})\cdot s+K_{p})}\end{displaymath}



    With a ramp input $R(s)=\frac{1}{s^{2}}$ ,we obtain the error's Laplace Transform:


    \begin{displaymath}E(s)=\frac{(J \cdot s^{2}+B\cdot s)}{(J \cdot s^{2}+(B+K_{d})...
...)}{(J \cdot s^{2}+(B+K_{d})\cdot s+K_{p})}\cdot \frac{1}{s^{2}}\end{displaymath}



    We use the final-value theorem to obtain the error e(t) at the infinity:


    \begin{displaymath}e(\infty)=\lim_{s \rightarrow 0} s\cdot E(s)=\lim_{s \rightar...
...}+(B+K_{d})\cdot s+K_{p})}\cdot \frac{1}{s^{2}}=\frac{B}{K_{p}}\end{displaymath}



    The error is the same, change the value of $ \zeta=\frac{B+K_{d}}{2\cdot \sqrt{K_{p}\cdot J}}$, if we increase $K_{p}$ to eliminate the error, we can increase $K_{d}$ to the value of $\zeta$ not decrease.

    b)Using a Servosystems with speed feedback:



    \xymatrix{r \ar[r]& *+o[F]{\pm} \ar[r]&*+o[F]{\pm} \ar[r]&*+<1cm>[F]{\frac{K}{(J...
...h} }\ar[l]& \ar[l]& &\ar[d] \\
&\ar[u] &\ar[l] & \ar[l]& \ar[l]&\ar[l]&\ar[l]}





    We calculate the transfer function of the inside loop

    \begin{displaymath}\frac{C1(s)}{R1(s)}=\frac{\frac{K}{(J \cdot s+B)}}{(1+\frac{(...
...\cdot K)}{(J \cdot s+B)})}=\frac{K}{(J \cdot s+B+K_{h}\cdot K)}\end{displaymath}


    We calculate the transfer function of the system:

    \begin{displaymath}\frac{C(s)}{R(s)}=\frac{\frac{K}{(J \cdot s+B+K_{h}\cdot K)\c...
...)\cdot s})}=\frac{K}{(J \cdot s^{2}+(B+K_{h}\cdot K)\cdot s+K)}\end{displaymath}



    \begin{displaymath}\frac{E(s)}{R(s)}=\frac{R(s)-C(s)}{R(s)}=1-\frac{K}{(J \cdot ...
...cdot K_{h})\cdot s)}{(J \cdot s^{2}+(B+K_{h}\cdot K)\cdot s+K)}\end{displaymath}



    With unit-ramp input $R(s)=\frac{1}{s^{2}}$, we obtain the error's Laplace Transform is:


    \begin{displaymath}E(s)=\frac{(J \cdot s^{2}+(B+K\cdot K_{h})\cdot s)}{(J \cdot ...
...(J \cdot s^{2}+(B+K_{h}\cdot K)\cdot s+K)}\cdot \frac{1}{s^{2}}\end{displaymath}



    We use the final-value theorem to obtain the error e(t) at the infinity:


    \begin{displaymath}e(\infty)=\lim_{s \rightarrow 0} s\cdot E(s)=\lim_{s \rightar...
...K_{h}\cdot K)\cdot s+K)}\cdot \frac{1}{s^{2}}=\frac{B}{K}+K_{h}\end{displaymath}



    If we increase K for the error is almost zero, the damping ratio $\zeta=\frac{(B+K\cdot K_{h})}{2\sqrt{K\cdot J}}$ does not tend towards zero, which would have a high sobreelongacion, because $K_{h}$