XML
Laplace.T Root-locus Transient response Frecuency response
       
 
 
 

16 Problem A.5.12 Ogata 4edition (response to unit-step,rise time, peak time, maximum overshoot and settling time)



    Let's plot the system's response to unit-step and calculate rise time, peak time, maximum overshoot and settling time by Scilab

    \begin{displaymath}\frac{C(s)}{R(s)}=\frac{(6.3223\cdot s^{2}+18\cdot s+12.811)}{(s^{4}+6\cdot s^{3}+11.3223\cdot s^{2}+18\cdot s+12.811)}\end{displaymath}

    Program in Scilab:
    s=%s
    
    num=6.3223*s^2+18*s+12.811;
    
    den=s^4+6*s^3+11.3223*s^2+18*s+12.811;
    
    cr=syslin('c',num/den);
    
    t=0:0.01:20;
    
    c=csim('step',t,cr);
    
    xgrid;
    
    plot2d(t,c);
    
    xtitle(System's response to unit-step'
    ,'t(seg)','Amplitude')
    
    k=1;
    
    while(c(k)<1),k=k+1;end;
    
    riset=0.01*(k-1);
    
    [cpico,kpico]=max(c);
    
    peakt=0.01*(kpico-1);
    
    movershoot=cpico-1;
    
    kr=20/0.01+1;
    
    while(c(kr)>0.98&c(kr)<1.02),kr=kr-1;end;
    
    settlingt=0.01*(kr-1);
    
    riset
    
    peakt
    
    movershoot
    
    settlingt
    
    
    Results:
    -->riset
     riset  =
     
        0.85  
     
    -->peakt
     peakt  =
     
        1.67  
     
    -->movershoot
     movershoot  =
     
        0.6182275  
     
    -->settlingt
     settlingt  =
     
        10.03
    

     

     

     

     

     

     


    Image ProblemaA5_12